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Abstract - Sensing electrodes arranged in or around a display can provide input function for interactive
displays. Commercially this is interesting because the sensing electrodes and electronics can be made in
the same manufacturing process as that of the display itself thus reducing cost. In engineering terms
the electrodes measure capacitance changes resulting from the presence and movement of objects such as
hands and fingers in front of the display. At the quasi static frequencies used (100kHz) the human body
is conductive and the hands or fingers provide a screen between the capacitive electrodes. There is no
need to touch the actual display and the overall system constitutes a touchless gesture input system.

Determining the shape of the hand or fingers is a boundary condition reconstruction problem of
finding the boundary of an earthed conductive object D from electrostatic measurements. This is the
ill-posed problem of recovering the zero-surface of a solution to Laplace’s equation from Cauchy data
on part of the boundary of a domain. The problem has similarities with object reconstruction in EIT
or inverse scattering but is complicated because only a partial Dirichelet-Neumannn map is available as
experimental data.

We suggest an algorithm where at each iteration we have an approximation 0Dy to 0D on which we
calculate approximate Cauchy data by solving a Tikhonov regularized linear system. This data is used
to modify 0Dy by extrapolation towards the zero-surface giving the next approximation 0Djy1.

We implemented the algorithm in two and three space dimensions using the Boundary Element Method
for discretization. Numerical results using simulated data with added noise show that simply connected
but not necessarily convex objects can be reconstructed with reasonable positional accuracy and ap-
proximate shape, but as might be expected the shape is more accurately determined near the plane of
measurements.

1. INTRODUCTION

Consider a grounded and conductive object in the half space H := {z € R? : 23 > 0} above an infinite
plane OH. Cauchy data are obtained from capacitance measurements made between electrodes in the
plane with the aim to establish the location, size and shape of the object. We thus have the problem of
finding a domain D C H with smooth boundary 0D, such that

Viu=0 inH\D
where

u= fg on 0H

0
o _ gu on O0H
on

u= 0 on 0D

In this fg is the known potential distribution on the plane and gy the measured charge distribution
on the plane. n is the unit normal pointing out of the domain H \ D.

This problem is of interest in providing pointing and gesture input to display screens [1]. The display
is regarded as a ground plane and quasi-static measurements are made between electrodes arranged in or
around the display. The measurements are performed at a frequency high enough to regard the human
body as conductive and connected to ground, but low enough to justify an electrostatic formulation [2].

Here we study a simplified and idealized version of the problem. Our aim is to show that it is numeri-
cally feasible to extract shape information from limited and noisy data. We require to do this specifically
in the 3D setting. Note that the 1D version of the problem is trivial; it corresponds to finding the sep-
aration d of the parallel plate capacitance. For the 2D case, the logarithmic fundamental solution limits
the relevance to the practical situation of finite 3D objects and sensors arrangements. The next section
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Figure 1: A) Schematic illustration of cross capacitance charge imaging. B) Schematic illustration of the
cross capacitance object reconstruction.

describes the forward problem and introduces the concept of a charge image: The change in charge distri-
bution on the plane 9H resulting from the presence of the object. It is an image in sense that it contains
enough information to recover (‘see’) the shape of the object. Section 3 formulates the inverse problem
and explores the relation with other, better known inverse problems. Sections 4 to 6 set out our solution
to the inverse problem. Numerical examples are provided in the penultimate section. Our conclusions
are summarised in the last section.

2. FORWARD PROBLEM

This section gives an integral formulation of the forward charge imaging problem. We consider the
case of a single voltage electrode, referred to as the transmitter, at the origin. As illustrated in Figure
1A, a grounded object is located above the ground plane. Using Green’s theorem, the potential in the
space above the sensor plane is given by

ue) = [ tnw G asw)+ [ Glaanl)dsty) v H\D (1)
oH Y3 oD

gp = Ou/0n is the charge distribution on the object. G(z,y) is the free space Green’s function including
the image charge contribution to account for the ground plane [3, 4]. This means that there is no single
layer contribution on 9H. Also, the fact that u(z) = 0 on 9D was used to ignore the double layer
potential contribution on dD. The potential distribution fg(y) on the plane will be nonzero only for
the small, central transmitter electrode. The first term in (1) represents the contribution to w(zx) from
the transmitter, ys represents the coordinate along the positive xs-axis, that is, opposite to the outward
pointing normal. The second term in (1) is the contribution to the potential from the charge distribution
gp on the object. The charge distribution gp is found by solving (1) with u =0 on dD.

*/ G(z,y)gp(y) ds(y) = fH(y)w ds(y), =z € 0D (2)
oD 0H Y3

Although the integral operator on the LHS is compact the equation is solved numerically with relative ease.
This is due to the smoothness of the RHS and the fact that as an operator from H~'/2(dD) — H'/?(dD),
the operator has a bounded inverse [5].

The presence of the object decreases the charge density on the ground plane. We refer to this decrease
as a charge image c¢(z). It is given by the normal derivative of the second term in (1).

o) =~ [ PCEM gy dsty) a < o1 ®)

The minus sign in front of the integral is due to the fact that z3 is oriented opposite to the outward
pointing normal. ¢(z) is measured as a decrease in capacitance between the transmitter and electrodes
in the ground plane.
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Figure 2: Simulated charge image c¢(x) for three axi-symmetric objects. Indicated is the axis of rotation
and the shape of the three objects used.

Figure 2 illustrates the simulated charge image c(z) for a number of on axi-symmetric 3D objects.
Using rotational symmetry has the advantage of computational efficiency as well as representational ex-
pediency while at the same time remaining close, in terms of the Green’s function for example, to the full
3D situation that we are ultimately interested in. For clarity, images are plotted noise free, although in
the reconstructions below, 1% or 10% white noise is added. The shape of the three objects is illustrated
in the figure.

3. THE INVERSE PROBLEM

As can be seen the charge images for the three different shapes are certainly different, but it is not
immediately clear that these differences are enough to distinguish between them or even reconstruct the
different shapes from the charge images alone. It is to this inverse problem that we now turn. The
challenge is to find the domain D from limited and noisy measurements of c¢(x). That is from Cauchy
data on the plane OH. These measurements are referred to as cross capacitance sensing.

The problem is solved by identifying 0D as the zero potential contour of the unique solution of the
Cauchy problem for the Laplace equation. A substantial literature exists on inverse boundary problems
of this type, mainly on bounded domains in 2D, whereas in this case we deal with an unbounded domain
in 3D. For instance, Akduman and Kress [6] studied 2D shape reconstruction from Cauchy data on an
enclosing annulus. Héhner [5] used Dirichlet data on an enclosing open ball for a multitude of sources
for reconstruction of 3D shapes. The operator properties considered there are relevant to the analysis
of eqns (1) and (2) here. However, as we only use limited Cauchy data for one source, our approach to
the inverse problem is entirely different from [5]. Some approaches to Electrical Impedance Tomography
(EIT) [7] and crack detection [8, 9] also tackle inverse boundary problems governed by Laplace equation.
In 2D, conditional logarithmic stability estimates for the inverse boundary problem under a regularity
assumption on the unknown boundary have been given [10, 11], and this theoretical result has been
extended to 3D by Cheng et al. [12].

It is important to distinguish the problem from that in Electrical Capacitance Tomography (ECT) [13],
which also measures the capacitance between points, but which seeks to find domains of differing dielec-
tric permittivity and is an inverse coefficient problem. It is also important to point out that there are
capacitance measurements in which the load capacitance to single electrodes is measured [14, 15, 16].
These techniques also aim to create an ‘image’ of a remote object but in the vocabulary of this paper, this
image is the sum of multiple ¢(z), each one sampled at the just point, the position of the corresponding
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transmitter. The solution in this paper does not directly provide a reconstruction for this multiple trans-
mitter case, but we look forward to extending the work in the future. As an applied inverse problem,
finding D from c¢(z) has more in common with inverse acoustic scattering where single layer potential
expressions similar to eqn. (3) are found. Notwithstanding this, the fact that here we sample the (near
field) charge distribution on the ground plane rather than a far field pattern, means that the practical
differences with the acoustic scattering problem are as important as the theoretical similarities.

4. INVERSE CHARGE IMAGING

We use an iterative approach to the inverse problem as illustrated in Figure 1B. At each step k, we first
use the data c(x) to find a potential and charge distribution on an object 9Dy, the current guess. This is
used to deform 0Dy towards the real object, yielding ODy1. The process is then repeated. This section
deals with problem of finding a potential and charge distribution on the object dDy.

We make the assumption that we have a current guess 0Dy which encloses all singularities of the
analytic continuation of w. Obtaining an initial guess 0Dg is an independent problem that we do not
tackle in this paper. We refer to Kim et al. [17] for an interesting example on a bounded domain. Writing
fp, for the potential on the guess and gp, for the charge distribution, we obtain from Green’s theorem

_ G (x,y) 0G(z,y)
—u(r) =-— - fH(y)iay3 ds(y) + o, ka(y)ian(y) ds(y)
s G(x,9)9p, (y)ds(y) , =€ H\ Dy (4)

Because the assumption that u(z) = 0 does not hold on 9Dy, the double layer potential contribution
on dD;, has now been included.

We can evaluate eqn. (4) at the boundaries to obtain a system of equations for the boundary condi-
tions. Specifically we evaluate (4) on the boundary of the object to find an equation for fp,. Here we
need to introduce the factor 1/2 to account for the evaluation on the boundary. The normal derivative
of (4) on the ground plane is used to obtain an equation for gy . Hence

_§ka($) = _/BH fH(y)Tyg ds(y) + . ka(y)@T(y) ds(y)
- G(z,y)gp, (y)ds(y) , = € Dy
ODs
_ PG(z,y) 9*G(x,y)
9 () I - fH(y)iaygaxg ds(y) + . I (y)m ds(y)
_/ 8G3(L’ D gp, ) dsty) o€ 0
ODx 3

Introducing the following operator short hand

v(x) = fp,(z)

q(x) = —gp,(2)

@ = [ e as)
o) = [ o, % ast
S0 = - [ G ds)

@ = [ % asy) - gt
o) = [ oGS D s
@) = - [ e, ) dsty

The equations become
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Here the Cauchy data on the object (v,q) is mapped to the functions (¢, ¢) which are derived from the
Cauchy data on the sensor plate. The inverse problem of finding (v, ¢) from (¢, ¢) is the ill-posed problem
of finding Cauchy data on a part of the boundary.

It is therefore necessary to use regularisation to solve (5) to find (v, q) from (¢,¢). The regularisation
is provided by the knowledge that 0Dy is close to the real object and the potential on 9Dy is small. The
norm ||v|| must therefore be small and this requirement is added to the solution to (5). Hence v, q are
found through minimization of the Tikhonov functional:

1
||§U+Kv+5q—t|\2+HMU+Tq—CH2+043||v||?> (6)

In which || -||p is a first order Sobolev norm and «, is the Tikhonov regularisation parameter. It is given
a subscript -, to distinguish it from a Tikhonov regularisation parameter used in a modification of the
functional introduced below. In numerical experiments we have found that minimizing this functional
works well to recover approximate Dirichlet and Neumann data on a guess 0Dy. In the next section we
will discuss how this data can be used to deform the object 0Dy towards an improved approximation
0Dt 1.

We also consider a simpler, modified version of functional (6) which is easier to evaluate numerically.
Because v(x) tends to zero when 9Dy, is approaches the correct 9D, the contributions of the Kv and Mv
terms in functional (6) diminish as 9D}, approaches the final solution. To reduce the numerical effort
required to evaluate the functional, these terms are dropped. The second term in (6) is now independent
of v(x) and an alternative way of expressing the regularisation is required. Instead of demanding that
v(x) is near zero, we now require that the charge distribution ¢ on 9Dy is close to a charge distribution
corresponding to v(xz) = 0 on dDy. This implies a prior for the charge distribution that satisfies eqn.(2)
on Dy, that is g,(z) = (S71t)(z).

Moreover, the nearness to the prior needs to measured by a normalized first order Sobolev norm ||-||p,
in which Pg = Q;lPQ;I and

f(x)
ap(z)

The reason for the use of the normalisation operator @, !'is that unlike v(x), g,(x) will vary by several
orders of magnitude over an object. This means that the larger elements will dominate the penalty term
leaving relatively unconstrained areas where ¢,(x) and ¢(z) are small. Unfortunately g¢,(x) and ¢(x)
will be smallest on the parts of 9Dy, furthest away from the transmitter and sensor plate and it is just
there where the instability in ¢(z) is greatest. Said differently, these areas are associated with the smaller
singular values of T'. We therefore use the pre-conditioned penalty term that is normalised by g, (z) itself.
Another way of interpreting the use of the @, 1PQ; I norm is that in a statistical sense the prior has a
covariance Q2 and an expected value of g,(z) [18].

With this we minimize the simplified functional

(Q;lf)(x) = x € 0Dy

1
50+ Sa =" +||Tq = cl* + aglla — gl (7)
The first term can be minimized independently of the last two.

5. OBJECT RECONSTRUCTION

Having obtained the potential and charge distribution we now seek to deform the known object towards
the real object guided by the knowledge that this real object is at ground potential. One method that
readily suggests itself is to use eqn.(4) to find a zero contour, or at least a minimum contour, near the
object and identify that as our next best guess. This would be a straightforward way to solve the Cauchy
problem and this approach has been reported for acoustic scattering in general [19, 20] and the point
source method [21] in particular. A variation on this would be to refrain from calculating the actual zero
contour but use the potential v and the gradient ¢ to make a extrapolation from 0Dj towards the zero
potential contour.

In numerical experiments we have found that neither method works well. The reason is that finding
or extrapolating towards the zero potential contour will induce the strongest changes in 9Dy, where ¢(x)
is smallest, i.e. those parts for which the conditioning of eqn.(5) is worst. We therefore opt for an
extrapolation method which is pre-conditioned with the operator @),. For linear extrapolation this leads
to a dilation function h(x) which gives the deformation at x on the object along the outward pointing

normal.
h(z) = =2 v(x) x € Dy (8)
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The attenuation, or relaxation, factor A avoids overshoot and it is a second, independent regularisation
parameter.

6. STOPPING CRITERION
We thus have a cross capacitance reconstruction algorithm in which the shape is found from a level set
evolution driven by the potential w itself. Level sets have been used in a variety of shape reconstruction
problems [22, 23, 24]. Briefly stated the algorithm here starts with an initial guess and then, through
repeated application of either equs (6) and (8), or eqns (7) and (8), evolves the object until a stopping
criterion is reached.

A common method for deciding when a best fit has been obtained is the so called ‘Morozov Discrepancy
Principle’, which states that a good fit is obtained when the difference between measured and fitted image,
the so called cost function, is similar to the noise in the measured image. A drawback of this criterion
is however that it requires prior knowledge of the noise in the measurements and is in any case only
valid for true white noise. Instead we use the change in cost function for our stopping criterion. Thus
the iteration is stopped when the iteration to iteration change in the cost function falls below a certain
threshold.

Tk — Tk—1

Tk

< FE

In which F is the threshold. The cost function, or residue, 7 at iteration k is defined in terms of the
piecewise constant elements of the charge image used in the numerical experiments.

2
1 — cf — ¢

Tk = — E —_—
n ck

i=1 ?

In which ¢; represents the i-th piecewise constant element in the noisy input image and cf the ¢-th
element of the charge image of the current reconstruction. Strictly speaking the stopping criterion is
only sensible and can only be guaranteed to stop the iteration if rj is strictly decreasing with iteration
number. Currently we lack a formal proof for this, but do always see strictly decreasing behaviour in
the numerical experiments. The threshold F is an additional regularisation parameter. Choosing E too
large has obvious drawbacks, but also at excessively small values poor reconstruction is obtained. We
have found that a value of E = 0.01 worked well in all numerical experiments. We stress that with this
construction, the actual noise level is not an input parameter to the stopping criterion.

7. PARAMETER SCALING

Before turning to the numerical results in the next section we make a refinement to eqns (6)-(8) by
introducing a scaling such that we can use regularisation parameters & and A that are independent of
the functional used and are insensitive to the scale and level of discretization level of the problem. We
do this by setting

M .
T 2T ©)
o = a—IHL__ (10)
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These factors allow comparison of the effectiveness of the penalty terms in functionals (6) and (7). The
factors & and A are used as input to the cross capacitance object reconstruction and the values of A, a,
or a4 and are then calculated once only, using the initial guess to calculate the operator norms.

8. NUMERICAL RESULTS

Numerical simulations were performed on a personal computer using C++ code with NAG library sup-
port. The simulations are calculated using a Boundary Element Method (BEM) formulation [25, 26] in
which v, ¢,t and ¢ are taken to be piecewise constant. The Cauchy principal value integral is taken to
remove the singularity in the S and K integral operators. One variant of the code was implemented for
an axi-symmetric problem in which the object and the sample points of ¢(x) have rotational symmetry
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Figure 3: Reconstructions from the charge images in Figure 2 using functional (6). The average iteration

number (k) and residue at termination (7) are shown in insets.
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Figure 4: Reconstructions from the charge images in Figure 2 using functional (7). The average iteration

number (k) and residue at termination (7) are shown in insets.

around the x3-axis. This reduces the problem to a two dimensional one in which the Greens function
G(z,y) and its derivative on the ground plane are expressed in complete elliptic integrals of the first and
second kind [27]. The second variant of the code implemented the full 3D problem for non-symmetric
triangulated wire frame models of the objects.

Figure 3 illustrates reconstructions using functional (6) for the axi-symmetric objects of the (axi-
symmetric) charge images illustrated in Figure 2. Each object was reconstructed five times for different
draws of 1% normally distributed noise added to the input image. The objects were defined in 51 linear
line segments and the charge image ¢(x) was sampled at 200 equidistant radial points from p = 0 to
p = 6. In each case a unit sphere centred at x5 = 3 was used as initial guess. Heuristic regularisation
parameters & = 1 and A = 1 were used.

The objects and reconstructions show the variation in reconstruction attributable to the noise in the
input images and the reconstructions here have been chosen to illustrate both what can be and what
cannot be reconstructed. As is perhaps obvious, no significant reconstruction is achieved on the side of
the object facing away from the sensor plane. However, fair reconstruction is obtained at the facing side.

Figure 4 illustrates reconstructions using simplified functional (7) for the same axi-symmetric objects.
Again each object was reconstructed five times for different draws of 1% Gaussian noise added to the
input image and regularisation parameters & = 1 and A = 1 were again used. As can be seen, the
reconstructions are very similar to those shown in Figure 3. These reconstructions typically took a third
of the CPU time of the reconstructions shown in Figure 3. We stress that the same & and A were used
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Figure 5: Reconstructions at 10% input noise level for different regularisation parameters using functional
(6). The average iteration number (k) and residue at termination (7) and the regularisation parameter
(&) are shown in insets.

for the results in Figures 3 and 4. The actual regularisation parameters «, and o, used in functionals
(6) and (7) differed by two orders of magnitude. Results at 3x discretization or 100x scale, again
with the same & and 5\, but with very different values of o, aq and A, yield virtually identical results.
These observations support our conjecture of the equivalence of the functionals and the scaling of the
regularisation parameters.

The results in Figure 5 explore the effect of the input noise and the Tikhonov regularisation parameter
& on the reconstruction. Shown are three reconstructions of object C in Figure 2, each again for 5 draws
of the input noise, which is this time set at 10% rather that 1%. The reconstruction in Figure 5A was
done with the same regularisation parameters as before (& = 1, A= 1) and shows that increased noise
on the input data clearly deteriorates the reconstruction. This deterioration is particularly noticeable
as an increased variation in the reconstructed object between noise draws. In Figure 5B this variation
is reduced by increasing the Tikhonov regularisation parameter (& = 10, A= 1). Figure 5C shows that
increasing the regularisation parameter further (& = 100, A= 1) reduces the variation to zero but also
obliterates meaningful reconstruction. Note that the average error at termination is close to the 10%
input noise level for all results in Figure 5.

Finally, Figure 6 illustrates a preliminary reconstruction of a full 3D object using the simplified func-
tional (7). A triple pronged ‘real’ object was used to generate a charge image on a 64 x 64 sensor array to
which again 1% noise was added. The same regularisation parameters (& = 1, A = 1) were used. Figure
6A shows the original object located above a model of an experimental sensor system currently under
development. The object was located 3cm above the sensor array. A lem radius spherical initial guess
of 398 triangles was used as initial guess. Figure 6B shows a cross section of original object at z3 = 2.3
and 5 reconstructions for 5 draws of 1% noise.

9. CONCLUSIONS

In this paper we have presented the problem of finding the shape of an earthed object from electrostatic
measurements made in a plane. The problem is ill-posed but we have shown that an iterative algorithm
with three levels of regularisation can recover shape information from noisy data. The algorithm is
regularised by 1) the assumption that the initial guess is close to the real object, 2) by the relaxation
parameter in the deformation of the guess and 3) by the stopping criterion. We have shown that a
simplification can be made to the minimization functional, which yields similar reconstruction results
but makes the numerical execution three times faster. We have introduced a scaling of the regularisation
parameters that makes the algorithm robust across a range of object and sensor sizes, as well as different
discretization levels.



-+ Fingermouse

Rotx Rty [T T T IIITT] Zoom «| | ][ 45.0 Dolly a=1

Vo1

EdX
d

Ly
[
)
£
hid
&

r=14%

Figure 6: Reconstructions for a full symmetric 3D object using 1% input noise. A) A perspective view
of the original object centrally located above the sensor area. B) Cross section of the original and
reconstructed object at x3 = 2.3cm.
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